/Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US | Communications Earth & Environment
npressfetimg-262.png

Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US | Communications Earth & Environment

  • 1.

    Livelihoods, To assemble Resilient the Influence of Pure Hazards and Disasters on Agriculture. Meals Agric. Organ. UN (2015).

  • 2.

    Smith, A., et al. US Billion-Greenback Climate & Local weather Disasters 1980-2019. NOAA Nationwide Facilities for Environmental Information: Asheville, NC, USA 15 (2019).

  • 3.

    Stocker, Thomas F., et al. Local weather Change 2013: The bodily science basis. contribution of working group I to the fifth evaluation report of IPCC the intergovernmental panel on climate change. (2014).

  • 4.

    Biasutti, M. & Seager, R. Projected modifications in US rainfall erosivity. Hydrology Earth Syst. Sci. 19, 2945–2961 (2015).

  • 5.

    Hoomehr, S., Schwartz, J. S. & Yoder, D. C. Potential modifications in rainfall erosivity beneath GCM climate change circumstances for the southern Appalachian area, USA. Catena 136, 141–151 (2016).

    Article 

    Google Scholar 

  • 6.

    Janowiak, M. et al. Adaptation resupplys for agriculture: responding to climate variability And alter Inside the midwest and northeast. USDA (2018).

  • 7.

    Cooke, B. & Jiang, H. Outlook for US agricultural commerce. Digital Outlook Report from the Financial Evaluation Service (2020).

  • 8.

    Alizadeh, M. R. et al. A century of observations reveals growing probability of continental-scale compound dry-scorching extremes. Sci. Adv. 6, eaaz4571 (2020).

    Article 

    Google Scholar 

  • 9.

    Gipson, J. & Joham, H. Affect of Evening time temperature on progress and enhancement of cotton (Gossypium hirsutum L.). I. Fruiting and Boll Development 1. Agron. J. 60, 292–295 (1968).

    Article 

    Google Scholar 

  • 10.

    Ludwig, M., Wilmes, P. & Schrader, S. Measuring soil sustainability by way of soil resilience. Sci. Complete Environ. 626, 1484–1493 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lal, R. Rights-of-Soil. J. Soil Water Conserv. 74, 81A–86A (2019).

    Article 

    Google Scholar 

  • 12.

    Hillel, D. Introduction to Environmental Soil Physics. (Elsevier, 2003).

  • 13.

    Yoder, D. C. et al. Soil well being: which implys, measurement, and worth by way of a essential zone lens. J. Soil Water Conserv. 76, 103–108 (2021).

  • 14.

    Li, J. et al. Uneven responses of soil heterotrophic respiration to rising and reducing temperatures. Soil Biol. Biochem. 106, 18–27 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Nouri, A., Lee, J., Yin, X., Tyler, D. D. & Saxton, A. M. Thirty-4 years of no-tillage And cover crops enhance soil extreme quality and enhance cotton yield in Alfisols, Southeastern USA. Geoderma 337, 998–1008 (2019).

    Article 

    Google Scholar 

  • 16.

    Lal, R. Degradation and resilience of soils. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond. Ser. B 352, 997–1010 (1997).

    Article 

    Google Scholar 

  • 17.

    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall Leads to maize yield Lack of a comparable magnitude to extreme drought in America. Glob. Change Biol. 25, 2325–2337 (2019).

    Article 

    Google Scholar 

  • 18.

    McLaughlin, B. C. et al. Climate beneathground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 26, 3091–3107 (2020).

    Article 

    Google Scholar 

  • 19.

    Van Kessel, C. et al. Local weather, interval, and N placement decide N2O emissions in lowered tillage methods: a meta‐analysis. Glob. Change Biol. 19, 33–44 (2013).

    Article 

    Google Scholar 

  • 20.

    Döring, T. F. et al. Resilience as a common criterion of well being. J. Sci. Meals Agric. 95, 455–465 (2015).

    Article 

    Google Scholar 

  • 21.

    Corstanje, R., Deeks, L., Whitmore, A., Gregory, A. & Ritz, K. Probing The idea of soil resilience. Soil Use Manag. 31, 72–81 (2015).

    Article 

    Google Scholar 

  • 22.

    Herrick, J. E. & Wander, M. M. Relationships between soil natural carbon and soil extreme quality in cropped and rangeland soils: the significance of distribution, composition, and soil organic exercise. in Soil Processes and the Carbon Cycle. 405–425 (CRC Press, 2018).

  • 23.

    Gaudin, A. C. et al. Increasing crop variety mitigates weather variations and enhances yield stability. PloS ONE 10, e0113261 (2015).

    Article 

    Google Scholar 

  • 24.

    Biggs, R. et al. In the direction of guidelines for enhancing the resilience of ecosystem providers. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Article 

    Google Scholar 

  • 25.

    Holt-Giménez, E. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case research in participatory, sustainable land administration impact monitoring. Agric. Ecosyst. Environ. 93, 87–105 (2002).

    Article 

    Google Scholar 

  • 26.

    Slette, I. J. et al. How ecologists outline drought, and why We ought to always do greater. Glob. Change Biol. 25, 3193–3200 (2019).

    Article 

    Google Scholar 

  • 27.

    Tirivarombo, S., Osupile, D. & Eliasson, P. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth Parts A/B/C 106, 1–10 (2018).

    Article 

    Google Scholar 

  • 28.

    Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article 

    Google Scholar 

  • 29.

    Gitz, V., Meybeck, A., Lipper, L., Youthful, C. D. & Braatz, S. Local weather change and food safety: risks and responses. Meals and Agriculture Group of the United Nations (FAO) Report 110 (2016).

  • 30.

    Walthall, C. L., Anderson, C. J., Baumgard, L. H., Takle, E. & Wright-Morton, L. Local weather change and agriculture in America: Influences and adaptation. (2013).

  • 31.

    USDA Nationwide Agricultural Statistics Service Cropland Knowledge Layer. Revealed crop-particular data layer. (2019).

  • 32.

    Hake, K. & Grimes, D. in Physiology of cotton 255-264 (Springer, 2010).

  • 33.

    Primary, C. L. W288 Cotton Manufacturing in Tennessee.  (2012).

  • 34.

    Lal, R. & Shukla, M. K. Principles of soil physics. (CRC Press, 2004).

  • 35.

    Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Influence of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 1–9 (2018).

    Google Scholar 

  • 36.

    Seneviratne, S. I. et al. Land radiative administration as contributor to areaal-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Nouri, A. et al. Crop species in no-tillage summer time crop rotations have an effect on soil extreme quality and yield in an Alfisol. Geoderma 345, 51–62 (2019).

    Article 

    Google Scholar 

  • 38.

    Singh, S. et al. Soil natural carbon and aggregation in response to thirty-9 years of tillage administration Inside the southeastern US. Soil Tillage Res. 197, 104523 (2020).

    Article 

    Google Scholar 

  • 39.

    Werner, W., Sanderman, J. & Melillo, J. Decreased soil natural matter in An prolonged‐time period soil warming experiment lowers soil water holding performance and have an effect ons soil thermal and hydrological buffering. J. Geophys. Res. 125, e2019JG005158 (2020).

    CAS 

    Google Scholar 

  • 40.

    Blanco-Canqui, H., Mikha, M. M., Presley, D. R. & Claassen, M. M. Addition Of cowl crops enhances no‐till potential for enhancing soil bodily properties. Soil Sci. Soc. Am. J. 75, 1471–1482 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Jin, V. L. et al. Management controls The internet greenhouse gasoline outcomes of rising bioenergy feedstocks on marginally productive croplands. Sci. Adv. 5, eaav9318 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Vincent, L., Zhang, X., Mekis, É., Wan, H. & Bush, E. Changes in Canada’s climate: Tendencies in indices based mostly on Daily temperature and precipitation data. Atmos.-Ocean 56, 332–349 (2018).

    Article 

    Google Scholar 

  • 43.

    Houghton, J. T. et al. Local weather change 2001: the scientific basis.  (The Press Syndicate of the College of Cambridge, 2001).

  • 44.

    Liu, Q. et al. Extension of the rising season will enhance vegetation publicity to frost. Nat. Commun. 9, 1–8 (2018).

    Article 

    Google Scholar 

  • 45.

    Mueller, N. D. et al. Cooling of US Midwest summer time temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article 

    Google Scholar 

  • 46.

    Lal, R. Restoring soil extreme quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).

    Article 

    Google Scholar 

  • 47.

    Qin, S. et al. Temperature sensitivity of SOM decomposition ruled by combination safety and microbial communities. Sci. Adv. 5, eaau1218 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil bodily environment. Geoderma 326, 164–200 (2018).

    Article 

    Google Scholar 

  • 49.

    Himes, F. Nitrogen, sulfur, and phosphorus and the sequestering of carbon. in Soil processes and the carbon cycle. 315–319 (CRC Press, 2018).

  • 50.

    Li, L. & Schaeffer, S. M. Stabilization mechanisms of isotope-labeled carbon substprices in soil beneath moisture pulses and conservation agricultural administration. Geoderma 380, 114677 (2020).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Nouri, A. et al. Management interval controls the synergistic effect of tillage, cowl crop, and nitrogen price on cotton yield and yield stability. Agric. Ecosyst. Environ. 301, 107007 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Adams, J. Local weather indices, an open supply Python library offering reference implementations of generally used climate indices. Local weather indices in Python. (2017).

  • 53.

    McKee, T.B., Doesken, N.J. & Kleist, J. The Relation of Drought Frequency and Duration to Time Scales. Proceedings of the Eighth Convention on Utilized Climatology. 179-184 (1993).

  • 54.

    Thornthwaite, C. W. An strategy toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).

    Article 

    Google Scholar 

  • 55.

    Palmer, W. C. Meteorological Drought. Vol. 30 (US Division of Commerce, Climate Bureau, 1965).

  • 56.

    Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer drought severity index. J. Clim. 17, 2335–2351 (2004).

    Article 

    Google Scholar 

  • 57.

    Culman, S. W. et al. Permanganate oxidizable carbon displays a processed soil fraction That is delicate to administration. Soil Sci. Soc. Am. J. 76, 494–504 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Jones, D. & Willett, V. Experimental analysis of stpricegies to quantify dissolved natural nitrogen (DON) and dissolved natural carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Kemper, W. & Rosenau, R. Aggregate stability and measurement distribution. Methods of soil analysis: Half 1 bodily and mineralogical. Methods 5, 425–442 (1986).

    Google Scholar 

  • 60.

    Fuchs, B. Using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). in NDM Center. Nebraska-Lincoln, Caribbean Drought Workshop. 1–24 (2012).

  • 61.

    Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991).

  • 62.

    Racine, J. S. RStudio: a platform-unbiased IDE for R and Sweave. (JSTOR, 2012).

  • 63.

    Institute, S. SAS 9.4 Output supply system: Consumer’s Information. (SAS Institute, 2014).

  • 64.

    Saxton, A. A macro for altering imply separation output to letter groupings in Proc Mixed. Proc. Twenty third SAS Clients Group Worldwide, 22–25 March 1998, Nashville, 1243–1246 (1998).

  • TAGS: